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Abstract

Relationships are derived which describe the voltage of and the ionic and electronic currents through a solid
electrolyte galvanic cell under load as an explicit function of the independent variables. These relationships result
from an appropriate extension of the classical Wagner approach for the open circuit case to the conditions of a cell
in charge or discharge mode. The formulae represent generalized versions of the Wagner—Schmalzried equations.
They readily allow determination of the chemical potential distribution throughout the electrolyte under load

conditions.

1. Introduction

Recently, formulae describing the flux of oxygen ions
through a single and multilayer mixed conducting oxide
under the influence of an external load and chemical
potential gradient were derived, which lead to rather
complicated relationships [1]. Actually, much simpler
formulae considering the single-layer case have already
been used in the literature [2, 3] which can easily be
transferred to more general conditions. These formulae
which represent generalized Wagner—Schmalzried equa-
tions have practical relevance for a number of solid
electrolyte applications, for example, in a fuel cell, a
battery, the alkali metal thermal-to-electric converter.
Likewise, they are the theoretical background for the
method of partial short-circuit to determine the ion
conductivity of a mixed ionic-electronic conductor. The
approach resulting in these relationships is presented in
the following account.

2. General relationships
The current density 7 of the charge carrier ‘k’ reads:

Ok
— grad
oF grad nfy

Ik = — (1)
where F is the faradaic number and oy, zy, 7 are the
conductivity, the charge number, and the electrochemi-
cal potential, respectively, of the charge carrier k.

*This paper is dedicated to Carl Wagner (1901-1977) to mark the
centenary of his birth.

Suppose the ionic crystal MA under consideration
may be either a predominantly metal ion (k = m) (i.e.,
cationic) or anionic (k = a) conductor. Within this
crystal an equilibrium can be assumed to exist between
the ions, the electrons and the respective neutral
particles [4]:

M 4z’ = M (2a)

AR = A |z, (2b)

Therefore the electrochemical potentials of these
species are interrelated. Independent of whether MA is
conductive for anions or cations, in the following an
arbitrary ion (i.e., k = 1), with the charge number z; is
considered to be the mobile species. The neutral particle
corresponding to ‘I’ is taken to be X; where ¢ is the
number of atoms associated in the standard state of X.
Then the generalized relationship for the electrochemical
potentials reads as follows:

1
grad n; + zj grad n, = Egrad Ix . (3)

with py, denoting the chemical potential of X: and
grad pyx. = R grad(TInax.) (where ax. is the thermo-
dynamic activity of X¢, R the gas constant and 7T the
temperature).

The electrochemical potential difference of the elec-
trons between the surfaces (') and (”) of the electrolyte
corresponds to the voltage U between these two points
provided the metallic contacts are made of the same
material (cf. [5]):

e —ne = FU 4)
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If grad 5;in Equation 3 is zero and the interfaces of the
electrolyte are in equilibrium with their surroundings,
the integration of Equation 3 together with the definition
according to Equation 4 leads to a voltage that is
identical with the Nernst equilibrium cell voltage Uey:

RT a// 1/zi&
X
Ueq = —? In <a;<> (5)

Every solid electrolyte is characterized by a compar-
atively high level of the activity «; of the mobile ion 1’,
which is usually achieved by a strong intrinsic disorder
or by doping. As a consequence, the activity of ‘i’ does
practically not change, if the activity of the correspond-
ing neutral species varies in the surroundings of the
electrolyte. Hence, @; remains constant within a broad
region of the chemical potential of X.:

a; = const. (ax.) (6)

This condition is in accordance with the experimental
observation that, within the chemical potential region
under consideration, the ionic conductivity is a constant.
This applies to all practically relevant electrolyte mate-
rials.

The total electronic conductivity, g, is the sum of the
contributions due to electrons (subscript n) and holes
(subscript p):

Oc = Op + Op (7)

The application of the mass action law to the
electrochemical equilibria (Equation 2(a) and (b)) and
the consideration of Equation 6 lead to the chemical
potential dependence of the partial electronic conduc-
tivities o, and o}, [6, 7]:

1/zi¢
R
op = 0 (ax) (8a)
and
1/z¢
axi
On = 0j (Z) (8b>

In the above relationships, the constants ag and aq
are the electron conduction parameters which were
introduced in analogy to Schmalzried [8]. They relate the
partial electronic conductivities to the ionic conductivity
g; of the electrolyte and to the activity of the neutral
species X:. ag and ag represent those Xg-activities at
which the electronic conductivities o, and o,, respec-
tively, are equal to the ionic conductivity ;. Thus, the
electron conduction parameters characterize the limits
of the ionic domain of the electrolyte (cf. [9]).

3. Balance of the charge carrier current densities under
charge and discharge

According to Wagner [4], in an unloaded cell the ionic
current density #; flowing through the electrolyte is

induced by the partial internal short-circuiting current
density i, due to electronic conduction. In contrast, the
situation under load is characterized by the fact that the
total polarization current density that corresponds to i
results from the sum of i, and an additional current
density i.y that flows through the external circuit (Fig-
ure 1). Thus, the classical balance equation of the charge
carrier current densities must be extended as follows:

iy = —(ic + iext) )

The current density ig is, like i, of electronic nature
and acts in the same way as an electronic current would
act within the electrolyte. However, i, is not at all an
electrolyte-related quantity. In order to describe i. in a
way corresponding to Equation 1, the fictitious conduc-
tivity 0. must be introduced. 0., can be understood as
being determined by the ratio between the external
current density and the electric field strength that would
cause this current density to flow through the electrolyte.
As concerns the current density, it is equal to the ratio
between the external current I.,; and the electrolyte arca
Asg. The field strength, in its turn, can be represented by
the ratio between the cell voltage U and the electrolyte
thickness dsg. Thus, 6. can be written as

|Iext|/ASE

U] /dse. (10)

‘O'ext| =

In Equation 10, both the current and voltage may be
either positive or negative. They are related to each
other by the extent of the external load. While the sign
of the cell voltage U is determined by Equation 4, there
is, at first glance, no strict definition regarding the
direction and the appropriate sign of /... However, the
definition of I has to fulfil the requirement that, in
view of Equation 9, the sign is compatible with the signs
of the electrolyte-related currents I; and I.. For that
reason I, is defined as follows:

Uext -U

- (11)

Lyt =

U.x denotes the voltage which, in a charge or pumping
mode of the cell, may be externally applied. Ry is the
load resistance (cf. Figure 1).

According to Equation 11, even if U is nonvarying,
I« can change sign by changing U.. Thus, the
fictitious conductivity o., may be either positive or
negative. Its sign is consistent with the signs of all the
other quantities involved, only if, in place of Equa-
tion 10, 0.y is defined as

_[ext/ASE _ dSE(l - %)
U/dsg AseRy

(12)

Oext =

Using Equation 12, i, can be formulated as though
the external current were an apparent electron current
density of the electrolyte with the same driving force as
the internal electron current density 7.



dse (1 — )
AsgRLF

fext = grad n, (13)

By substitution of Equations 1 and 13 into Equa-
tion 9, as well as taking Equation 3 into account, #; can
be eliminated so that the electrochemical potential of the
electrons is obtained as a function of the chemical
potential of X

1 1
grad s, = Y (ﬁ) grad uy, (14a)
With:
d 1 _ Uexl
K:1+EL_JJ (14b)

Asg Ro;

Equation 14(b) proves that x is constant with respect
to ux,, only if Uey =0, and then it is an explicit
function of the independent variables of the operational
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(x =dsg; px, (x =dsg) = p%.) yields the ion current I;
that flows th}ough the electrolyte. To solve the integral,
Equation 7 and the chemical potential dependence of
the partial electron conductivities (i.e., Equations 8(a)
and (b)), have to be taken into account. According to
the foregoing statement about the chemical potential
dependence of k, the k against uy, relationship is known
only if the special case Uey = 0 is considered. Only then
or if x is approximately taken to be a constant with
respect to py,, the integration can be carried out as
described subsequently.

The analytical form of the solution of the integral
depends on the relative magnitude of the electron
conduction parameters ag and as. On condition that:

4 /a 1/z:¢
- <ﬁ> < 1
K= \do

which is usually fulfilled, especially for materials serving
as solid electrolytes, the integration gives:

(16)

1/z¢ 1/z¢
dy. 1{ ag
ag K aXi

1

1/z¢ I+

GiASE RT 1 ;/( K
L= — |(==1)m|= + —1In

dSE F K X K 1

14—

K

conditions of the cell. Otherwise, if Uy # 0, k is related
to the dependent quantity U and, since U is an unknown
function of py,, the relationship between x and puy. is
likewise unknown. )

4. Current and voltage

In view of Equations 1, 3 and 14, the ionic current
density can be expressed in terms of the gradient of the
chemical potential of the respective neutral species:

gi 1
% (1-——)grad
zidF ( =+ K) SHECHX:

Confining the consideration to only the one-dimen-
sional case of the chemical potential gradient, the
integration of Relationship 15 over the space coordinate
x between the positions (x = 0; uy (x =0) = uy, ) and

(15)

i =

1/z¢ 1/z¢
a// ) 1 o
< ) | +_< )
dg K aXE

To obtain expression 17, one has to make use of the
inequality (Expression 16) on different approximation
levels. Besides, it also has to be assumed that the
conductive area Agg of the solid electrolyte is a constant
with respect to the x axis. This normally applies to most
real cases.

In the same way as the ionic current is obtained, the
electronic current can be derived from Equation 1 (with
k = e) in which grad #, is substituted by Equation 14.
Then the electronic current density reads:

1 Oe

@:;§E;;5 (18)

grad ry,

The procedure of integrating Equation 18 is basically
the same as that used in integrating Equation 15.
Provided that the conductive area the electron current is
flowing through is identical with Agg, the resulting
equation for the electronic current, /., becomes:




1238

In view of Equation 4 the integration of Equation 14
leads directly to the cell voltage U. The integral can
again be solved by analogy to the previous approach.
Similarly, the resulting formula for U is correct only if
condition 16 is fulfilled:

U =

become explicit functions of those quantities that are
independent variables in view of the operation of the
galvanic cell, that is, load resistance, temperature, the
chemical potentials at the electrodes and the electrical
properties of the electrolyte.

/!

KF ax.

Equations 17, 19 and 20 represent the most general
relationships for the ionic and electronic current as well
as the voltage of an arbitrary solid electrolyte galvanic
cell in a charge or discharge mode. Thus, these rela-
tionships are extensions of the classical Wagner—
Schmalzried equations which themselves are included
in Equations 17, 19 and 20 as the special case k = 1.

The condition k = 1 is realized when R; — oo. This
corresponds to an open circuit potentiometric measure-
ment (cf. Table 1). k = 1 is likewise fulfilled, if Uy = U
and Ry is arbitrary. Such conditions are met in a
compensating circuit after Poggendorf formerly used for
currentless measurement of a voltage. With arbitrary
U and a finite value of Ry, which corresponds to the
charge or discharge mode of operation, the circum-
stances of other practically relevant applications of a
solid electrolyte galvanic cell, such as pumps, coulomet-
ric and amperometric sensors or electrochromic devices,
can be simulated (cf. Table 1). Finally, with finite Ry
and U. = 0, the conditions of a cell under load in, for
instance, a battery, a fuel cell, or the alkali metal
thermal-to-electric converter are met. The same applies
to the conditions in a partially short-circuited cell used
to determine the ionic conductivity of the employed
electrolyte (see below). As mentioned in the preceding
paragraph, the latter conditions are particular ones
insofar as, from a mathematical point of view, with
U. = 0 the dependent variables [;, I, and U exclusively

Table 1. Compilation of the operation modes of a solid electrolyte
galvanic cell and the corresponding x-values

Conditions k-Value Application

Ry — o0 k=1 OC mode; potentiometry,
€.g. sensors

Uexe = U; Ry arbitrary x = 1 Potentiometry with compen-

sating voltage

Discharge mode; e.g. bat-
teries, fuel cells, alkali metal
thermoelectric converter
Charge/discharge mode;
coulometry, amperometry,
electrochemical pump, elec-
tro-chromic devices

U.e = 0; Ry finite K> 1

Uext # U; Ry finite k=>1or k<l

| . 1/z¢ 1 {a 1/z¢
a - = L+~
RT . i K\ ag K\ ax.
_ In| — + In T 7E v P
1+—<X‘“> 1+—<,—@>
K\ ag i\ d.

Strictly, Equations 17, 19 and 20 exclusively reflect the
situation which occurs between the outer surfaces of the
solid electrolyte. Only if these surfaces are in equilibrium
with the adjacent phases, implying that there is no
polarization effect at the interfaces, do the relationships
cover the situation of the whole cell. However, parti-
cularly in the case of finite Ry there will usually be a
difference in the chemical potential between the electro-
lyte—electrode interface and the bulk of the adjacent
electrode phase. Nevertheless, the relationships remain
useful, if they are supplemented by additional relation-
ships that quantify the contribution of electrode polar-
ization (cf. [3, 10]).

When substituting Equations 5 and 20 into Equation
17, one obtains:

_ 6idse

I (Ueg = U) (1)

dsg

which agrees with Kirchhoff’s theorem of the divided
circuit of Figure 1. Analogously one gets for I.:

gid
1e _Yi SE

(kU — Ueq) (22)

dsg

Combining Equation 21 with Equation 22 and taking
Equations 11 and 14(b) into account yields:

I + Ixt = —1; (23)
This relationship demonstrates that the integrated equa-
tions are in accordance with the differential ones (cf.
Equation 9).

According to Equation 19, the magnitude of the
internal electronic short-circuiting current I, decreases,
if the galvanic cell is partially short-circuited over an
external resistance (Ry finite; Ug = 0; implying k > 1).
The reason for that is obvious. Due to the external
short-circuit of the cell, the electrical potential difference
across the electrolyte, and hence the driving force for the
electron conduction, is diminished. In Equation 19 this
reduction of the driving force is expressed by the factor
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Fig. 1. Electrical equivalent circuit for a solid electrolyte galvanic cell
under charge and discharge conditions. (Ueq: Nernst equilibrium cell
voltage; U: cell voltage; U,y externally applied voltage; R;: resistance
of the ion conduction of the electrolyte; R.: resistance of the electron
conduction of the electrolyte; Ry: load resistance; /;: total ionic
polarization current through the cell; I.: internal short-circuiting
current due to electron conduction of the electrolyte; I..: external
short-circuiting current).

1/x in front of the electron conduction parameters. With
k > 1 the factor corrects the extent of the internal
electronic short-circuit towards smaller magnitudes.
Thus the condition x > 1 acts as if the width of the
ionic domain of the electrolyte were extended into both
the n- and p-conduction region with the electrolyte
exhibiting apparently smaller n- and p-conductivities.

4.1. Determination of the ionic conductivity by the method
of partial short-circuit

Proceeding from Equation 21, the voltage difference
AU = U(k) — U(k = 1) between two different states of
load of the galvanic cell, that is, k > 1 (Ry finite;
Ut = 0) and k =1 (R — o00; Uex = 0), 1s related to
the change in the polarization current flowing through
the cell and also to the magnitude of the ionic conduc-
tivity of the electrolyte:

dsE

AU = —
giAsg

Ii(x) = Li(k = 1)) (24)

Suppose the electron conduction properties of the
electrolyte are unknown, then the current difference
Ii(k) — Ii(k = 1) is also unknown. It can be set approx-
imately equal to the measurable current I, if the
change in electronic current caused by the short-circuit
(i.e., I(k) —I.(k = 1)) is negligible (cf. Equation 23).
This is better fulfilled as x approaches 1 and/or as the
electronic conductivity of the electrolyte becomes neg-
ligible. Since the latter condition is inapplicable for
mixed conductors, it has at least to be guaranteed that x
differs only slightly from 1 (i.e., x £ 1). This implies that
the resistance Ry is chosen to be very high in relation to
the internal resistance of the cell, and hence, the load
and the voltage decay are small. In other words, the cell
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has only to be partially short-circuited. Then the
following approximation can be derived from Equation
20 (see also a different approach to the same problem in

[2, 3]):

Uk)=-U(k=1) (25)

1
K
Invoking this approximation to substitute U(x = 1) in

the quantity AU and taking Equations 11 and 14(b) into
account, Equation 21 reveals that:

Li(k) = Li(k = 1) & —Iy (26)
Substitution into Equation 24 yields:
dsg
v gidse @7)

Equation 27 relates the measurable quantities AU,
L., dsg and Agg to o;, thus offering an opportunity to
determine the ionic conductivity of an arbitrary mixed
conducting solid electrolyte without knowing the extent
of the electronic conduction of the material under study
and also without knowing the extent of possible stray
currents in the experimental apparatus (cf. [11]). Those
currents would act in the same way as the internal
electronic short-circuit.

The foregoing relationships ignore any effects of
electrode polarization. To minimize their impact on
the result of the conductivity measurement is, from a
practical point of view, not always easy (cf. [10]). At any
rate, it holds that the conductivity data determined by
means of the short-circuiting method are less affected
by electrode polarization the less intensive the short-
circuiting of the cell is.

5. Chemical potential distribution throughout the
electrolyte

In the unloaded case the ionic and electronic currents
are identical. Hence, it does not matter which of the
currents is taken for balancing the steady-state flux. This
is different under load conditions insofar as the ionic
current increases steadily with increasing external load
while the electronic current simultaneously decreases
and finally vanishes altogether. Therefore, the ionic
rather than the electronic current is preferable as a basis
for the profile calculation.

According to Choudhury and Patterson [12], the
balance between the ionic current flowing through the
whole electrolyte from x = 0 to x = dsg (i.e., fi(dsg)) and
the ionic current flowing in the same direction but only
through a part of the electrolyte up to the position x
(i.e., L(x)) may be written as

fi(dsg) = Li(x) (28)

In view of Equation 17 this leads to
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(29)

X (a@)
doe | /d 1/zé

Xe

1 a \ 1+E<a@>

(;— l)ln<a,—x‘j> + ;ln

X 1 “

1+—<ﬁ>

K ag

with ax, denoting the activity of X: at an arbitrary
position x inside the electrolyte.

Equation 29 is an implicit relationship for the
functional dependence ax. = f(x) and hence for the
chemical potential profile across the electrolyte under
load conditions. In contrast to the unloaded case (cf.
[13]), this relationship cannot be resolved analytically
with respect to ax, provided « is arbitrary. Nevertheless,
Equation 29 proves to be a useful tool to throw light on
the behaviour of a solid electrolyte under external load.
It is particularly easy to handle if U, = 0.

Figures 2 and 3 show two examples of an oxygen
chemical potential profile inside an yttria stabilized
zirconia (YSZ) pellet when this pellet is, as part of a
loaded galvanic cell, exposed to air on the left side and
to a hydrogen/water gas mixture on the right side. The
ordinate denotes the oxygen partial pressure of a
hypothetical atmosphere with which the electrolyte layer
at position x would be equilibrated if the solid was cut
through at this position. In view of Equations 3 and 6,
this oxygen pressure profile corresponds to the distri-
bution of the electrical potential and the concentration
of the electronic charge carriers inside the solid. The

-10

log (pozlbar)

-15 log (pg /bar) = - 35.7

20 L L L ! L I 1 I !
0 0.5 1

X/dSE

Fig. 2. Location-dependent distribution of the oxygen chemical po-
tential inside the electrolyte of the galvanic cell: air (po, = 20.9 kPa)|
YSZ|H,, HyO (pu,/pu,0 = 0.1) under different loads. (Load resis-
tances in Q are given as curve parameters; temperature: 900 °C;
electrolyte pellet thickness: 1 mm; electrolyte area: 10 cm?; ionic,
n- and p-conductivity data are taken from [14, 15]).

calculation of the profiles is based on data of the ionic
and partial electronic conductivities which represents an
average of literature data [14, 15]. Since one cannot rule
out some inaccuracy in this data, especially in the
electronic conduction parameters, the profiles of Fig-
ure 3 additionally illustrate the effect of a tentatively
assumed deviation of the n-conduction parameter by
five orders of magnitude towards a higher value.

It can be seen from Figures 2 and 3 that, due to the
load of the cell, a remarkable change in the shape of
the chemical potential profile occurs. This means that
a change in the load conditions results steadily in a
change in the distribution of the electron concentration
throughout the electrolyte. The stronger the load, the
more linear the profile. It follows from Equation 19 that,
with an increasing extent of short-circuiting, that is, with
k increasingly exceeding the value 1, the electrolyte
becomes more like a pure ionic conductor. In other
words, the impact of the electronic properties of the
solid electrolyte on the electrical behaviour of the whole
cell vanishes in favour of the impact of the external
circuit. Then the electrolyte behaves to an increasing
extent like an ohmic resistor with the electrical potential

log (pg/bar) =-30.7

X/dSE

Fig. 3. Oxygen chemical potential profile through an YSZ pellet under
the same conditions as given in the caption of Figure 2, except the
n-conduction parameter p. is assumed to be five orders of magnitude
larger than that used for the calculation of Figure 2.



decreasing linearly over the length of the resistance,
which corresponds to a linear decay of the chemical
potential.

The derived relationships also prove useful in the
more general case Ugq # 0. Then k has to be approx-
imated by a constant with respect to uy, in order to
render the respective equations integrable. Even though
such an approximation may compromise the accuracy of
the solution, it provides a way to achieve quantitative
data. Successively this data can be improved by em-
ploying an iterative procedure. In the iteration process it
is first necessary to choose a value of U from which to
calculate a starting value of k (cf. Equation 14(b)) the
use of which allows determination of I; and U using
Equations 17 and 20. Taking the result for U, a new k-
value is determined. This procedure has to be repeated
until x, [;, and U remain constant. Only then may
Equation 29 be applied to determine the potential
profile.

Figure 4 shows several examples of potential profiles
calculated by employing the described iteration proce-
dure. As solid electrolyte a ceria based material was
chosen for the purpose of comparison with the oxygen
chemical potential distribution described by Yuan and
Pal [1]. It becomes evident from Figure 4 that the
profiles for Uy = —0.5V and Ug = 0.5V arrange
themselves in a reasonable order relative to the curve for
Uexi = 0 V. This could be taken as an indication that
the profiles for Uy # 0 V resulting from the approach
described above appear to be numerically correct.

Moreover, Figure 4 reveals that with increasing elec-
trolyte thickness and increasing U,y the profiles change
in one direction. In both cases they gradually approach
a straight line in the same way as they would if only the
load resistance decreased (cf. this tendency in Figures 2
and 3). In view of Figure 1 this phenomenon appears to
be plausible. The galvanic cell is expected to be more
strongly short-circuited at lower load resistances or, if

dgg =100 um; U, =0V

dgg =100 um; U, =0.5V

dgg =200 um; U, =0.5V
dge =200 um; U, =6V

-5

log (pozlbar)
3

15}
dgg = 100 um; Uy, = -0.5 V
-20 ! I 1 1 1 ! I ! .
0 0.5 1
X/dSE

Fig. 4. Oxygen chemical potential profile through a doped ceria pellet
under the same conditions as described by Yuan and Pal [1].
(R =1 Q; temperature: 900 °C; electrolyte area: 1 cm? ionic, n-
and p-conductivity data similar to those used in [1]).
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Ry = const., at higher internal resistances R; of the
electrolyte or higher oppositely applied external voltag-
es. Keeping this in mind, the potential profile for the
extremely high external voltage of 6 V, which represents
a straight line in Figure 4, is much more probable than
the curve calculated by Yuan and Pal [1]. They claimed a
convex curvature for the same conditions.

6. Summary

Wagner—Schmalzried type equations are derived for the
voltage of and the ionic and electronic currents through
a solid electrolyte galvanic cell under load. The ap-
proach is based on the usual assumptions going back to
Wagner which implies that (i) apart from electronic
charge carriers, only one kind of ions is mobile in the
solid electrolyte; (ii) there is no cross-interaction in the
transport of the charge carriers; (iii) the equilibrium
between the charged species and the corresponding
neutral particles is virtually established throughout the
solid; (iv) the activity of the mobile ions remains
constant over the whole cross-section of the solid, that
is, within the whole region of the chemical potential of
the neutral species surrounding the electrolyte; (v) the
electrolyte materials under consideration have a wide
ionic domain.

The equations enable the chemical potential distribu-
tion throughout the electrolyte to be readily determined
under practically relevant conditions. Even though the
foregoing approach is idealized as it concentrates on the
electrolyte only and ignores all impacts of an electrode
polarization, it may also represent a useful basis for
inclusion of certain electrode effects.
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